

Solar Air Collectors

for commercial and industrial roofs

Datasheet

SolarVenti Professional
www.solarventi.com

General:

Basic concept:

- SolarVenti Professional preheats supply air to commercial/industrial HVAC systems.
- The preheated air is supplied at zero running cost.
- The free preheated air supply significantly reduces the need to run heating coils.
- The result is a substantial reduction in overall building heating costs.

The system is particularly suitable for production facilities, warehouses, swimming pools commercial buildings, office blocks etc.

Positioning of SolarVenti Professional units:

- SolarVenti Professional is designed for roofs (or ground) with little or no slope.
- SolarVenti Professional is optimally installed facing as close to due South as possible.
- A deviation of up to 45 degrees from due South is possible by simply increasing the area of solar collectors.
- At design stage, you need to take into account roof hoods, roof windows and other technical equipment on the roof.
- For preheating air from the southerly facing vertical walls of a building, SolarVenti recommends the use of the Canadian system, Lubi. SolarVenti A/S is the Scandinavian distributor for Lubi air preheating systems.

Max. 10 modules per row (20 meters)

The modules are assembled on site.

Den Jyske Håndværkerskole Hadsten (Hadsten Technical College, Denmark)

Technical data:

Base module

Dimension: 1004 mm x 1970 mm x 300 mm Weight: Approx. 10 kg per module

Weight: Approx. 10 kg per module Felt/Absorber: 1,25 m² absorber/felt per. m² collector, 2 mm black polyester.

Cover: 10 mm Polycarbonate (UV-resistant).

Pressure drop: 25 Pa / 50 m³/m² collector

75 Pa / 100 m³/m² collector 175 Pa / 150 m³/m² collector

Efficiency: 70% - Each 125 m³/m² collector

Max. energy output: Approx. 742 kWh/m² at 125 m³/m² collector Average energy output: 500 kWh/m² (depends on type of control system)

Felt: The absorber/felt is automatically cleaned at temperatures above 80°C.

There is normally no need to replace the felt.

The felt withstands temperatures up to 200°C.

Other recommendations:

Max. length per row of collectors: 20 meters

For larger air volumes, more rows of collectors are recommended.

Documentation:

A similar model (SolarVenti SV14) has been tested and approved by

the Fraunhofer Institute in Germany CE-norm is not yet available.

SolarVenti A/S participates in this in Germany (LUKO project).

Source: Fraunhofer InInstitute

Measurements of the Solar Air Collector efficiency versus air flow.

Measurements of pressure drop in Solar Air Collector versus air flow.

Source: Fraunhofer Institute

Global horizontal irradiation

Europe

Calculating max. energy output:

Max. energy output = Irradiation [kWh/m²] x efficiency [%] of chosen Solar Collector

Example: Germany average power (illustrated above)

SolarVenti® Professional (data page 5)

Chosen air flow: 125 m³/m² Solar Air Heater (page 6)

1060 kWh/m² x 70 %

Max. energy output = 742 kWh/m^2

114 modules on roof of garage, Canada

Maintenance.

Surface:

Normally, it is not necessary to clean the surface of the collector.

It can be washed down with water and mild soap if necessary (do not use solvents).

Filter:

The filter requires no maintenance.

Activating a by-pass or stopping the ventilation generates higher temperatures inside the Solar Air Collector.

At temperatures above 80 degrees C, the filter is self-cleaning.

Expected life time:

Minimum 15 years.